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ABSTRACT 

We give examples of distinct integers i, j and rings T for which the matrix 

rings Mi(T) and Mj(T) are isomorphic as rings, but for which the free 

modules TT(i) and TT(J) are non-isomorphic as T-modules. 

Throughout this note M~(R) denotes the ring of i • i matrices over the ring 

R, while R (i) denotes the direct sum of i copies of the left regular moduIe RR. 

All rings are assumed to have a unit element, all subrings are assumed to have 

the same unit element as the including ring, and all ring homomorphisms are 

understood to preserve the unit element. 

There are many known examples of rings R for which there is a ring isomor- 

phism M~(R) ~- Mj(R) with i ~ j .  For instance, if R = RFM(S) (the ring 

of countably infinite row-finite matrices over the ring S), then Mi(R) -~ Mj(R) 

for all integers i and j. All such isomorphisms between Mi(R) and Mj (R) for 

i r j which appear in the literature are induced by starting with a ring R 

for which R (i) ~ R(J) as left R-modules, and then taking endomorphism rings: 

Mi(R) ~- EndR(R (i)) ~ EndR(R(J)) -~ Mj(R). We answer in the affirmative the 

following question: is it possible to find a ring T and two distinct integers i, j 

with the property that Mi(T) ~- Mj(T) but the left T-modules T (i) and T(J) are 

NOT isomorphic? This of course implies that the matrix ring isomorphism is not 

induced by an isomorphism of free modules as described above. 

We present below, in great detail, a procedure which produces a ring T for 

which T = MI(T) ~- M2(T), but for which T (1) is not isomorphic to T (2). A 
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somewhat less detailed generalization of this procedure will then be described so 

as to yield the following 

P R O P O S I T I O N :  For any pair of integers n > 1 and m _> 1 there exists a ring T 

for which Mm(T) ~ Mmn(T) as rings, but T (m) is not isomorphic to T (mn) as 

T-modules. 

Let R be any ring for which there is an isomorphism r M4(R) -* R = MI(R). 

(There are many such rings; for instance, any ring for which R (4) is isomorphic to 

R0) as left R-modules. Such rings include any ring of the form R = R F M(S) .  

But later we will need additional information about R which will preclude us 

from using rings of this particular form.) Let e: M2(R) -~ M4(R) denote the 

usual embedding as scalars of a ring of 2 by 2 matrices into a ring of 4 by 4 

matrices. Let ~ denote the composition r o 5; so r M2(R) --* R. But since r is 

an isomorphism and ~ is not surjective we have that the image of ~ is not all of 

R. We denote Ira(C) by S1, and we denote by 

r M2(R) ~ S1 

the ring isomorphism gotten by viewing the codomain of r as $1. 

But $1 is a proper subring of R, so M2($1) is a proper subring of M2(R). Let 

$2 denote the image of M2($1) under r So we have an isomorphism 

r M2(S1) --~ $2. 

As above we have that $2 is a proper subring of S1, so that M2($2) is a proper 

subring of M2 ($1). Upon repeating the process we produce the following sequence 

of inclusions, where all the vertical maps are isomorphisms: 

S1 D $2 D $3 "" " 

M2(R) D M2(S1) D M2($2) ""  

Now let T denote NieN Si (the intersection of the rings in the top row), and 

let U denote NieN M2(Si) (the intersection of the rings in the bottom row). It 

is trivial to show that U = M2(T). We let r U ~ T be the function defined by 

restriction of the r r is well-defined (since each r is defined as the restriction 

of r for each i), and r is an isomorphism. So we have 

M1 (T) = T = ~ U -- M2 (T). 



Vol. 99, 1997 NON-INDUCED ISOMORPHISMS 345 

Thus T is a 'candidate' for a ring of the desired type. 

We now show that  we can pick the original ring R in such a way that  the left 

T-modules T = T (1) and T (2) are not isomorphic. To do so, we use some ideas 

of Leavitt [2]. The m o d u l e  t y p e  (or simply type)  of a ring R is defined as 

follows. If R has invariant basis number (i.e., for all integers i and j ,  R (0 = 

R (j) if and only if i = j),  then the t y p e  of R is defined to be the letter d (for 

d imensional ) .  Otherwise, there exists a smallest integer n with the property 

that  R (n) is isomorphic to some R (v) with v > n. Pick v minimal with this 

property and let k denote v - n. In this case we say that R has t y p e  (nit, kit), 

or simply t y p e  (n, k). By [2, Theorem 1], if R has type (n, k), then for any two 

integers y and z each greater than or equal to n we have R (y) - R (z) if and 

only if y -= z(modk). In particular, R (1) ~- R (2) if and only if R has type (1, 1). 

Furthermore, it is shown in [2] that: (1) For an arbitrary pair (n, k) E N • N 

there exists a ring R whose type is (n, k), (2) If A, A' are rings with types (n, k) 

and (n', k') respectively, and if there exists a ring homomorphism from A to A ' 

(e.g. if A is a subring of A'), then n' <_ n and k' I k, and (3) If R has type (n, k) 

then for any integer m the ring Mm(R) has type 

m gcd , m 

where r is the smallest nonnegative integer such that m I n + r. 

Now let R be a ring of type (1,3); such exists by statement (1). Then R (4) 

R (1), since 4 = 1 (rood3). We use this module isomorphism to induce a ring 

isomorphism r M4(R) ~ R, and in turn produce the intersection ring T, as 

described above. But T C $1 C_ R, so by statement (2) we have that the type of 

T is (nT, kT) where 3 t kT. In particular, the type of T is not (1,1), so that  

T (1) is not isomorphic to T (2). 

This completes the detailed description of the particular example. 

To prove the Proposition, we generalize the above procedure as follows. Let 

n > 1 and m _> 1 be arbitrary integers, and let 1 = m2n. Let R be a ring of type 

(1,mn + 1), so notationally we have kR = mn + 1. Then R (hIm) ~ R (m), since 

nlm = m3n 2 = m ( m n - 1 ) ( m n +  l )+ m -= m (mod kit). This module isomorphism 

induces an isomorphism of matrix rings r MnZ,~(R) ~ Mm(R), which we view 

as r Mnl(Mm(R)) ~ Mm(R). We define t: Mn(Mm(R)) -+ Mnl(Mm(R)) to 
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be the usual embedding as scalars, define r = r o e: Mn(Mm(R))  "-* Mm(R) ,  

and let $1 denote Im(r We now repeat the procedure described above (with 

Mm(R)  in the role of R) to produce an intersection ring T with the property that  

T ~- Mn(T) .  This isomorphism yields an isomorphism 

Mm(T)  "~ Mm(Mn(T) )  '~ Mm (T) 

Since gcd(m, kn) = 1 we have by statement (3) that  kn = kM,,,(n), which 

in turn yields (as T c_ $1 C_ Mm(R))  that kn I kT. In particular this gives 

kr  >_ kn = m n  + 1 > mn  - m, so that mn ~ m (modkT), from which we 

conclude that  

T (m) is not isomorphic to T (m~). 

With this, T has been shown to be a ring having the properties set forth in the 

Proposition. 

We conclude with four remarks. First, an intersection procedure similar to 

the one employed here has also been used in the context of infinite dimensional 

matrix rings; see [1]. Second, we do not know whether the statement kn I kT of 

the previous paragraph can be strengthened to the statement kn = kT. Third, 

we do not know whether for arbitrary positive integers i r j there exists a ring 

T for which Mi(T)  ~- Mj(T) ,  but for which T (i) is not isomorphic to T (j). 

Finally, suppose R is a ring for which R (~) ~ R(n~); then we get an isomorphism 

of matrix rings M~(R) ~- Mn~(R), which we may view as Mz(R)  ~ Mn(M~(R)) .  

On the surface it might seem that, given proper selection of kn, W = Ms (R) could 

itself be a ring of the type described in the Proposition (corresponding to the 

case m = 1). However, such a 'proper selection' of kn cannot be concocted using 

the above ideas, as follows. In order to start with R (~) - R (~) (which allows us 

to get M I ( W )  = W -~ Mn(W))  we need nz = z (modkn). On the other hand, 

to ensure that W (1) is not isomorphic to W (n) we need n ~ 1 (modkMz(R)); i.e., 

( kR ) 
n ~  1 modgcd(z, kR) " 

But these two congruence statements are incompatible by a standard number 

theory result. This final remark is meant to give an indication as to why we 

utilize the somewhat intricate intersection procedure described above. 
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Added in proof'. Professor G. Bergman has recently demonstrated that  the 

Proposition given above can be significantly strengthened. 

PROPOSITION (Bergman): There exists a ring T for which the matrix rings 

Mi(T)  and Mj (T )  are isomorphic for all integers i and j ,  but for which the 

free left T-modules T (i) and T(J) are not isomorphic for distinct integers i and j .  

Specifically, let k be a field. For each pair of integers p, q with p dividing q we 

let r denote the integer q/p, and we let rp,q: Mv(k ) --* Mq(k) denote the map 

which replaces each entry c of the p x p matrix A by the r x r scalar matrix cir. 

(Note: Tp, q is not the scalar embedding of matrix rings utilized above.) Let T 

denote the direct limit of this system of matrix rings and ring homomorphisms. 

Then it is not hard to show that T is a ring which possesses the desired properties. 
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